

UNIVERSITY OF WISCONSIN-MADISON

Individualized Finger Prosthesis

Hannah Mrazsko– *Team Leader* Jason Dekarske – *Communicator* Sahand Eftekari – *BSAC* Stephan Blanz – *BWIG* Kaela Ryan – *BPAG* Bailey Ramesh – *BPAG*

> Dr. Ed Bersu – *Advisor* Gregory G. Gion – *Client*

Overview

- Problem Statement
- Background
- Design Specifications
- Preliminary Designs
- Design Matrix
- Future Work

Problem Statement

The Challenge: Design a financially reasonable and mechanically functional finger prosthesis without sacrificing aesthetics.

Background

- Approximately 61,000 partial hand amputations a year in the U.S.
- Current options restore phalange include a cosmetic or functional prosthesis
- Costs roughly \$4,000-\$8,000 to acquire prosthesis

Cosmetic

http://www.medicalartresources.com/services-directory/finger-toe-2/

Functional

http://www.npdevices.com/patients/pipdriver

Product Design Specifications

• Client Requirements

- Connect our mechanism to the residual finger
- Easily reproduced within the client's laboratory
- Max budget of \$500

Product Design Specifications

- Design Requirements
 - Provide proper tension and flexion
 - Small enough to be concealed underneath a cosmetic coating provided by client
 - Durable for everyday tasks

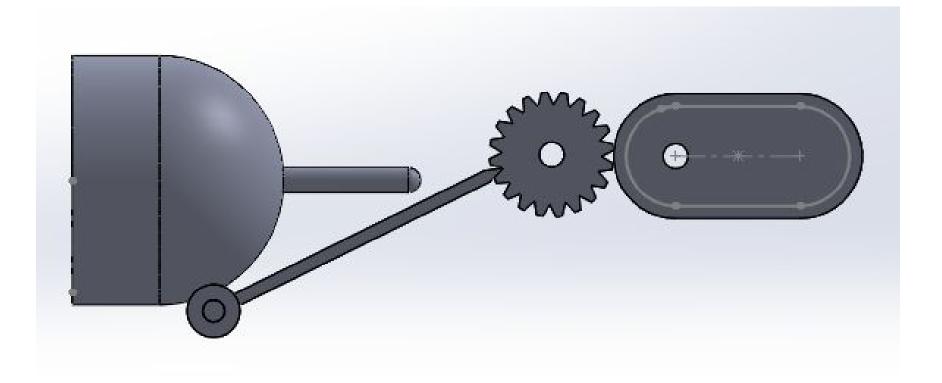
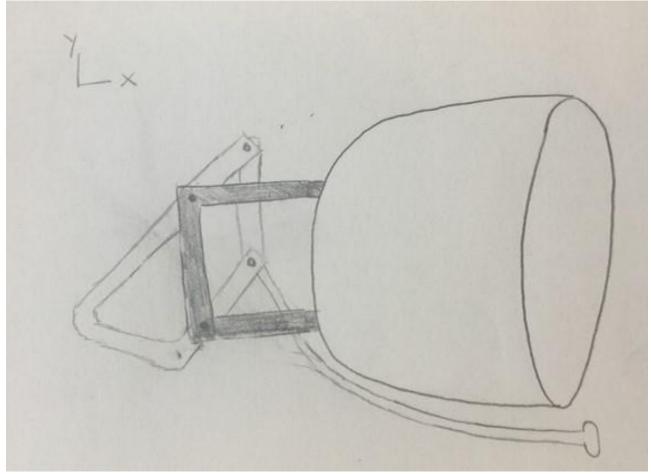
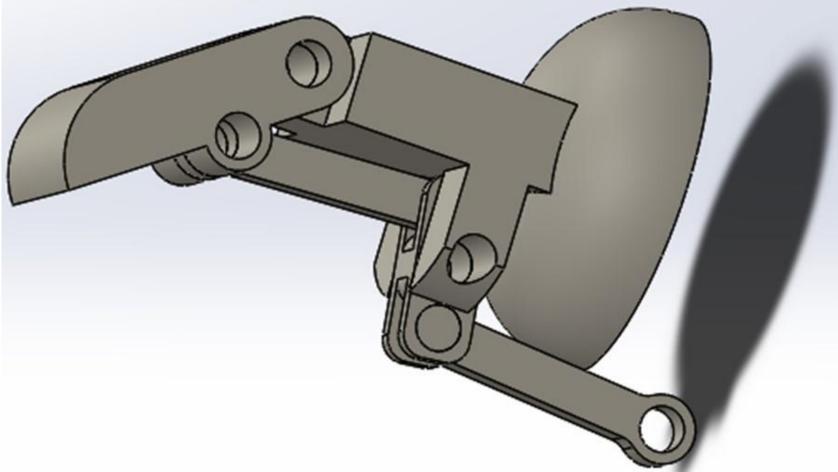


Image courtesy of medicalartprosthetics.com





Design Matrix

	Weight	Links		Two Bar Push / Pull		Leverage Joint	
Ease of fabrication	20	4/5	16	4/5	16	4/5	16
Functionality	20	4/5	16	4/5	16	3/5	12
Simplicity of design	15	4/5	12	3/5	9	4/5	12
Estimated lifespan	15	4/5	12	4/5	12	3/5	9
Weight	10	4/5	8	5/5	10	4/5	8
Safety	10	5/5	10	5/5	10	4/5	8
Cost	10	5/5	10	5/5	10	4/5	8
Total			84		83		73

Future Work

- Creating a natural look
 - Preventing abnormalities while bending
 - Bulkiness
- Moisture control worn 16 hrs/day
- Device adjustment
- Resilience to various amounts of pressure
- Durability device should last 3-5 years
- Safety concerns

Future Work

• Final prototype

Image Source: http://cticit.services/home.html/single-page.html

• "Amputation Statistics in the United States" Davis Law Group http://www.injurytriallawyer.com/blog/amputation-statistics-in-the-united-states.cfm

UNIVERSITY OF WISCONSIN-MADISON